

Air-hydro booster

RUSH BOOSTER

Generates air pressure to hydraulic pressure. The hydraulic system can be built with a simple pneumatic circuit.

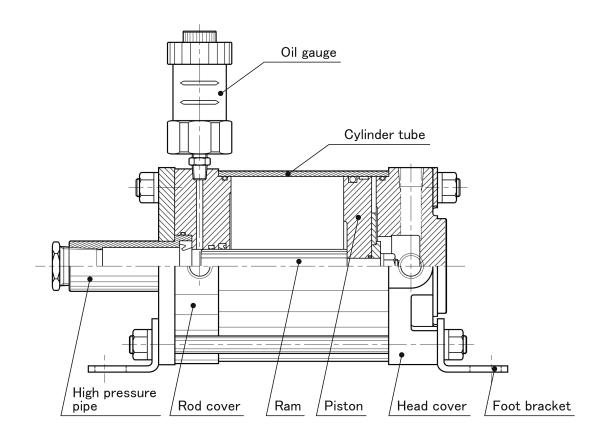
HIROTAKA MFG. CO.,LTD.

from a pneumatic source

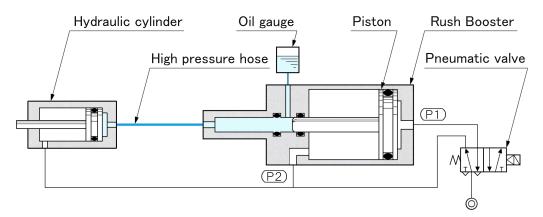
Easily generate hydraulic pressure

The operation is easy and it is very economical.

RUSH BOOSTER


Overview

The rush booster is an air-hydro booster that can generate hydraulic pressure with compressed air. It can be operated with one pneumatic valve and converted to high hydraulic pressure equivalent to 5 to 100 times the air pressure.


Use as a hydraulic source for short stroke hydraulic cylinders, automatic clamp devices, etc.

Feature

- 1 Converts 0.4 MPa air pressure from 2 to 40 MPa oil pressure.
- Since it operates with an air pressure, there is no trouble due to oil temperature rise even in the state of continuous operation and pressure holding.
- **3** The oil pressure can be changed steplessly by changing the air pressure.
- 4 Control can be done with an one pneumatic valve.
- **6** No surge pressure is generated and no accumulator is required.

Operating principle

When compressed air is supplied to P1 of the Rush Booster, the piston moves forward and the oil becomes high pressure according to Pascal's principle, and the hydraulic cylinder moves forward with high thrust.

If compressed air is supplied to \bigcirc 2 and the return port of the hydraulic cylinder, the hydraulic cylinder will retract due to air pressure.

In the case of single acting cylinder, only the Rush Booster is controlled.

How to use

Install actuatore such as hydraulic cylinders and hydraulic clamps on machines and devices.

Piping the Rush Booster and actuator with a high pressure hose, inject oil and use.

Hydraulic cylinder Oil gauge **Regulator with backflow function Low oil pressure piping (Only Model : RB-300) For double-acting hydraulic cylinders, branch and connect the return air piping of the Rush Booster, or supply the original pressure at all times. **The regulator is used when adjusting the thrust.

Specifica	tions										
Model	RB100×□-5	RB100×□-12	RB160×□-5	RB160×□-16	RB160×□-28	RB160×□-65	RB160×□-100	RB300×□-16	RB300×□-25	RB300×□-30	RB300×□-
Air cylinder diameter	φ 100	φ 100	φ 160	φ 160	φ160	φ160	φ 160	φ 300	φ 300	φ 300	φ 300
Ram diameter	φ 4 5	φ 28	φ70	φ 40	φ30	φ20	φ16	φ 75	ϕ 60	φ 55	φ 40
Pressure increase ratio	1:4.9	1:12	1:5	1:16	1:28	1:64	1:100	1:16	1:25	1:29.7	1:56
	30 200	16 130	100 300	30 180	30 160	30 130		1200	1300	1000	200
П	100 250	50 200	150 400	100 200	50 200	50 160	50	1800	2000	1500	400
Amount of	150 300	100	200 800	130 250	85 250	80 200		2800		2000	600
discharged oil(cm³)			250		100 300	100 250					800
					130						1000
Maximum generated oil pressure	3.4MPa	8.4MPa	3.5MPa	11.2MPa	19.6MPa	44.8MPa	70MPa	11.2MPa	17.5MPa	20.8MPa	39.2MPa
Proof pressure			•			1MPa					
Operating pressure					(0.15~0.7MP	'a				
Fluid (Air pressure)						Air					
Fluid (Oil pressure)				Sta	andard miner	al hydraulic	fluid (ISO VG	22)			

Air consumption volume

Unit: L (ANR)

Model	L	Model	L	Model	L	Model	L
RB100 × 30 - 5	3.7	RB160 × 250 - 5	20.2	RB160 × 130 -28	51.3	RB300 × 1200 – 16	316.7
100	7.9	300	22.4	160	60.7	1800	422.4
150	10.4	400	28.9	200	74.7	2800	609.4
200	13.7	800	52.6	250	91.1	RB300 × 1300 - 25	443.7
250	16.2	RB160× 30-16	14.7	300	107.6	2000	649.3
300	18.7	100	26.3	RB160 × 30 - 65	30.5	RB300 × 1000 - 30	458.3
RB100 × 16-12	5.7	130	33.2	50	44.7	1500	577.9
50	11.5	180	42.5	80	68.4	2000	788.3
100	18.7	200	44.8	100	82.6	RB300 × 200 - 56	224.1
130	23.2	250	54.0	130	106.3	400	357.1
200	33.0	RB160× 30-28	18.4	160	127.6	600	490.2
RB160 × 100 - 5	11.6	50	25.5	200	158.4	800	623.3
150	13.8	85	37.2	250	196.2	1000	756.4
200	18.1	100	41.9	RB160 × 50-100	68.3		

The numerical value is the amount of air consumed when the total amount of oil is discharged at an air pressure of 0.5 MPa and one reciprocating operation is performed, converted to atmospheric pressure.

Mass

Unit:kg

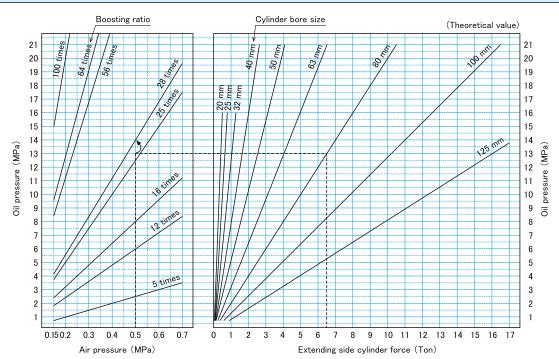
Model	Weight	ight Model		Model	Weight	Model	Weight
RB100 × 30-5	10.5	RB160 × 100 - 5	26.0	RB160 × 200 – 16	28.2	RB160 × 30 - 65	23.5
100	11.5	150	27.1	250	29.7	50	24.7
150	12.0	200	28.0	RB160 × 30 - 28	22.0	80	26.5
200	12.5	250	29.5	50	22.5	100	28.5
250	13.5	300	30.2	85	23.6	130	31.5
300	14.0	400	33.3	100	24.5	160	33.5
RB100 × 16-12	10.3	800	41.5	130	25.5	200	36.5
50	10.6	RB160× 30-16	23.1	160	26.3	250	40.0
100	11.4	100	25.1	200	28.0	RB160 × 50 - 100	36.0
130	12.0	130	26.1	250	29.5	Inquire to us for RB30	
200	13.2	180	27.6	300	31.5	inquire to us for K	D300.

RB 160 × 30 - 65

Product name
Rush Booster

Symbol	Bore size
100	100 mm
160	160 mm
300	300 mm

Example for product number : RB160 \times 30 – 65


Bore size : 160mm

Amount of discharged oil : 30 cm Boosting ratio : 65 times

Symbol	Amount of discharged oil				
30	30 cm ³				
50	50 cm ³				
80	80 cm ³				
100	100 cm ³				
160	160 cm ³				
:					

Symbol	Boosting ratio
5	5 times
12	12 times
16	16 times
25	25 times
28	28 times
:	:
	i

Selection method for product number

Determine the boosting ratio of Rush Booster and discharge oil amount from each of the operating air pressure, required force, and hydraulic cylinder diameter.

Example) Operating air pressure: 0.5 MPa, required cylinder force: 6.5 ton

In the graph, raise the position of air pressure 0.5 MPa and cylinder force 6.5 ton upward, and select the boosting ratio above the position where each cylinder diameter and horizontal line.

If a cylinder diameter of 80 mm is selected, the boosting ratio of Rush Booster is 28 times. (There are other combinations.)

Next, determine the discharged oil amount from the Rush Booster.

If the total stroke of the hydraulic cylinder is 20 mm, the volume inside the hydraulic cylinder is ϕ 80 area (cm²) \times 0.2 cm=100 cm² .

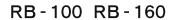
Considering the expansion of the hydraulic hose, the compression of oil, etc., the amount of oil discharged from the Rush Booster should be 1.5 times or more.

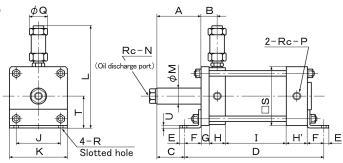
As a result, the model of the Rush Booster will be "RB160-160-28".

Estimated amount of oil compression

V1 = Original volume (Inside volume of the cylinder and piping)

 $\beta =$ Compression rate

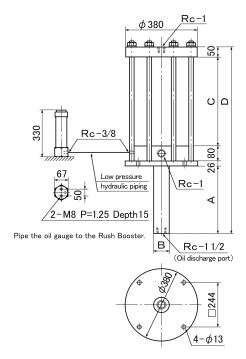

P = Oil pressure (MPa)


 ΔV = Estimated amount of oil compression

$\Delta V =$	10 B	PV1
--------------	------	-----

Oil temperature	20°C	40°C	60°C
β	6.8×10^{-5}	7.7×10^{-5}	8.6×10^{-5}

Dimentions

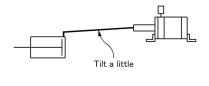


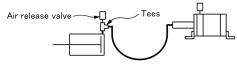
Model	В	E	F	G	Н	H'	J	K	L	N	Р	Q	R	S	Т	U
RB100	35	10	38	15	35	30	92	116	253	3/8	3/8	58	11	116	67	4.5
RB160	37	15	48	15	39	44	140	176	313	3/8	1/2	58	15	176	95	6

Model	Α	С	D	I	М	Model	Α	С	D	I	М	Model	Α	С	D	I	М
RB100× 30-5	35	-3	246	90	60	RB160×250-5	92	44	330	136	85	RB160×130-28	225	177	460	266	45
100	85	47	296	140	60	300	102	54	340	146	85	160	265	217	500	306	45
150	115	77	326	170	60	400	132	84	370	176	85	200	325	277	560	366	45
200	150	112	361	205	60	800	237	189	475	281	85	250	395	347	630	436	45
250	185	147	396	240	60	RB160× 30-16	65	17	300	106	66	300	465	417	700	506	45
300	215	177	426	270	60	100	120	72	355	161	66	RB160× 30-65	135	87	370	176	45
RB100× 16-12	40	2	266	110	43	130	145	97	380	186	66	50	195	147	430	236	45
50	100	62	326	170	43	180	185	137	420	226	66	80	295	247	530	336	45
100	180	142	406	250	43	200	200	152	435	241	66	100	355	307	590	396	45
130	230	192	456	300	43	250	240	192	475	281	66	130	450	402	685	491	45
200	345	307	571	415	43	RB160× 30-28	80	32	315	121	45	160	545	497	780	586	45
RB160×100-5	52	4	290	96	85	50	110	62	345	151	45	200	675	627	910	716	45
150	62	14	300	106	85	85	155	107	390	196	45	250	835	787	1070	876	45
200	77	29	315	121	85	100	185	137	420	226	45	RB160×50-100	280	232	529	330	36

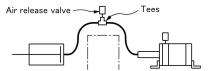
RB-300

Model Symbol	Α	В	С	D
RB300×1200-16	355	105	474	985
1800	490	105	609	1255
2800	715	105	834	1705
RB300×1300-25	510	100	629	1295
2000	760	100	879	1795
RB300×1000-30	525	92	645	1326
1500	670	92	790	1616
2000	925	92	1045	2126
RB300× 200-56	205	70	359	720
400	365	70	519	1040
600	525	70	679	1360
800	685	70	839	1680
1000	845	70	999	2000

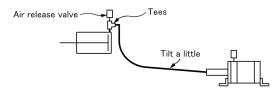

Oil piping


Take measures to prevent air from accumulating in the hydraulic pping and take measures so that air can be released when air accumulates.

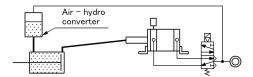
Maintenability is also improved by making one place where air collects.


The air returning to the Rush Booster side is naturally released in the oil gauge.

Rush Booster is above the hydraulic cylinder.

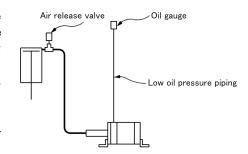


The hydraulic piping becomes like a mountain.


Install the air release valve at the highest point of the hydraulic piping.

Rush Booster is below the hydraulic cylinder.

※ Refer to "Mounting and Adjustment" for the mounting position of the oil gauge.


Fast operation cycle

Install an air – hydro converter on the return side of the hydraulic cylinder and add oil to the return side to elimenate the air part and prevent air bubbles from entering.

Piping

- RB100 and RB160 can be installed downward or upward at the oil discharge port in addition to horizontal installation. In that case, attach the oil gauge with elbow fitting etc. so that the oiling cap (red collor) is on the upper surface. (Rush Booster side oil gauge connecting port size: Rc1/4, Oiling port size: PF3/8)
- If the position of the oil gauge is lower than the installation position of the hydraulic cylinder, the oil in the hydraulic piping may return to the oil gauge and overflow from the oiling cap. In that case, use the low oil pressure piping and install the oil gauge at a position higher than the hydraulic cylinder. Also, by installing the oil gauge at a position higher than the hydraulic cylinder, it becomes easier to release air from the air release valve on the hydraulic cylinder side.
 - *The oil pressure in the low oil pressure piping is always close to no pressure.

- Be sure to install a meter-out speed controller on the head side of Rush Booster.
 - If the return speed of Rush Booster is too fast, the oil pressure will become negative and air bubbles will be generated, which may cause insufficient pressurization, insufficient stroke, oil leakage, etc.
 - After installation, slow down the return speed of Rush Booster as much as possible when air release, gradually increase the return speed after air release, and do not open the speed controller any more when there is no change in the return speed of the hydraulic cylinder.

HEAD OFFICE

BRANCH OFFICE 207 Castle-Shinkoiwa, 1-56-14, Shinkoiwa, Katsushika-ku, Tokyo 124-0024, JAPAN

Phone +81-52-991-6111 Fax +81-52-991-6115 Phone +81-3-3651-4230 Fax +81-3-3651-4231

OLINE UP O

PNEUMATIC POWER CYLINDER PNEUMATIC BOOSTER **POWER PACK CYLINDER RUSH BOOSTER** HYDRAULIC CYLINDER **FREE LOCK PAD** SELLOCK CYLINDER FLOATING CONNECTOR **AUTO CLAMPER SEL NUT LINEA BRAKE**

PNEUMATIC AND HYDRAULIC **EOUIPMENT**