

High Thrust Air Cylinder

POWER PACK CYLINDER

Air cylinder that compactly integrates the hydraulic cylinder and the air-hydro booster.

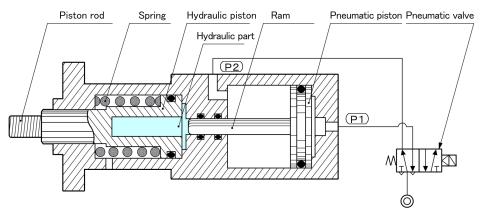
HIROTAKA MFG. CO.,LTD.

Only air pressure

Generates high thrust of 7 tons or more

Compact air cylinder

POWER PACK CYLINDER


Overview

The power pack cylinder is a high thrust air cylinder that compactly integrates an air-hydro booster and a hydraulic cyinder.

Feature

- 1 High thrust of 0.5 to 7.9 tons is generated only by air pressure.
- 2 It can output 1 ton with the same inner diameter as a ϕ 50 air cylinder.
- 3 As with pneumatic cylinders, control can be done with an one pneumatic valve.
- 4 The thrust can be changed steplessly by changing the air pressure.
- 5 It can reciprocate more than 50 times per minute.

Operating principle

When the pneumatic valve is energized, the pneumatic piston advances, the oil in the hydraulic part becomes high pressure, and the piston rod advances with high thrust. When the pneumatic valve is de-energized, the pneumatic piston return and the piston rod return due to the built-in spring.

Speci	fication												
Model			PP50-0510	PP50-1005	PP80-1324	PP80-1915	PP80-2910	PP100-2135	PP100-2727	PP100-3620	PP100-5514	PP100-7908	
Pneumati	cylinder diam	eter	φ	$\phi_{0} = \phi_{0} = \phi_{0$									
Ram dian	neter		φ 20	φ14	φ 30	φ 2 5	φ 20	φ 40	φ 35	φ 30	φ 25	φ 20	
Pressure	intensifying	ratio	1:6.2	1:12.7	1:7.1	1:10.2	1:16	1:6.2	1:8.1	1:11.1	1:16	1:25	
Hydraulic	cylinder diam	eter	φ	ϕ 40 ϕ 60 ϕ 80									
Nominal	thrust (kN)		05	10	13	19	29	21	27	36	55	79	
Stroke (mm)			10	5	24	15	10	35	27	20	14	8	
		0.4	2.6	6.0	7.0	10.5	17.0	12.0	15.3	21.0	31.0	49.0	
Forward thrust	Air pressure	0.5	3.4	7.6	9.0	13.5	21.0	15.0	19.3	26.0	39.0	59.0	
(kN)	(MPa)	0.6	4.2	9.2	11.0	16.5	25.0	18.0	23.3	31.0	47.0	69.0	
(1114)	(1111 47	0.7	5.0	10.8	13.0	19.5	29.0	21.0	27.3	36.0	55.0	79.0	
Backwar	d thrust (N)		340 670 670										
Fluid							А	ir					
Hydraulic fluid			Standard mineral hydraulic fluid ISO viscosity grade: VG22 or 32										
Proof pre	essure						1.51	MPa					
Operating	g pressure			0.35 to 0.7MPa									
Mass (kg)			6	.0		14.5				19.5			

Example for model number

PP 80 - 1324 - B - G

Bore size: ϕ 80, Nominal thrust : 1.3 ton, Stroke : 24 mm

Type with oil film removal specification for rod, With oil pressure gauge

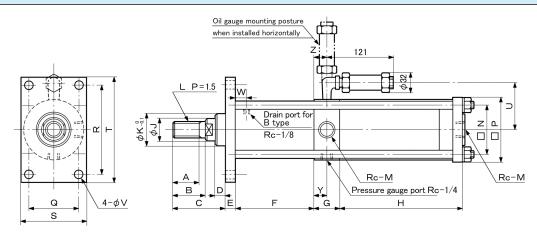
Series
Power Pack Cylinder

Symbol	Bore size
50	ϕ 50
80	ϕ 80
100	φ100

Symbol	Nominal thrust
05	0.5 ton
10	1.0 ton
13	1.3 ton
19	1.9 ton
21	2.1 ton
27	2.7 ton
29	2.9 ton
36	3.6 ton
55	5.5 ton
79	7.9 ton

Symbol	Stroke
05	5 mm
08	8 mm
10	10 mm
14	14 mm
15	15 mm
20	20 mm
24	24 mm
27	27 mm
35	35 mm

Symbol	Oil pressure gauge
NIL	Without pressure gauge
G	With pressure gauge


Symbol	Oil film removal specification for r0d
Nil	Without measures
В	With measures

Standard model

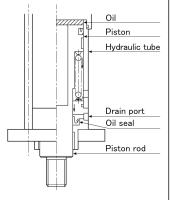
The following combinations of bore size, nominal thrust, and stroke are standard models.

Bore size	Standard models						
φ50	PP 50	-0510					
ψ 50	PP 30	- 1005					
		- 1324					
ϕ 80	PP 80	- 1915					
		- 2910					
		- 2135					
		- 2727					
ϕ 100	PP100	- 3620					
		- 5514					
		- 7908					

Dimension

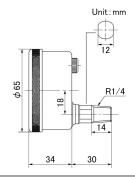
																						Uni	t:mm	
Model	Α	В	С	D	Е	F	G	Н	J	K	L	М	N	Р	Q	R	S	Т	U	V	W	Υ	Z	
PP 50	30	35	55	10	12	71	38	107	ϕ 25	ϕ 35	M20	1/4	53	75	53	110	75	135	60	11	18	26	26	
PP 80	40	50	80	15	16	120	38	192	ϕ 35	ϕ 50	M24	1/2	75	100	75	135	100	160	65	13	22	25	27	
PP100	50	55	95	20	22	139	45	250	ϕ 55	φ70	M30	1/2	95	130	90	180	130	220	75	19	30	25	31	

X Only PP100-7908 has a F value of 137.


Oil film removal specification for rod

The rod oil film removal specification protects parts from oil by minimizing oil discharge discharge from the sliding parts of the piston rod.

Internal structure


As the piston slides, the oil adhering to the inner surface of the hydraulic tube becomes a thin oil film and exits from the piston rod surface.

Before this oil exit, the oil film is removed by the oil seal and discharged from the drain port.

Oil pressure gauge

Model No.	2315 - 63 - 25B
Pressure range	0 to 25MPa
Accuracy	\pm 1.6 % or less of full scale
Heat resistance temperature	− 5 to + 45°C
Glycerine filling	This pressure gauge is filled with pure glycerine.
Temperature characteristic	Accuracy change of +0.3 % for each +10 $^{\circ}$ C rise baced on +20 $^{\circ}$ C, and -0.3 % for every -10 $^{\circ}$ C.

HEAD OFFICE

BRANCH OFFICE 207 Castle-Shinkoiwa, 1-56-14, Shinkoiwa, Katsushika-ku, Tokyo 124-0024, JAPAN

Phone +81-52-991-6111 Fax +81-52-991-6115 Phone +81-3-3651-4230 Fax +81-3-3651-4231

OLINE UP O

PNEUMATIC POWER CYLINDER PNEUMATIC BOOSTER **POWER PACK CYLINDER RUSH BOOSTER** HYDRAULIC CYLINDER **FREE LOCK PAD** SELLOCK CYLINDER FLOATING CONNECTOR **AUTO CLAMPER SEL NUT LINEA BRAKE**

PNEUMATIC AND HYDRAULIC **EQUIPMENT**